
Clustering initialization
clustinit_LBM.RdClustering initialization
Arguments
- connectivity
Binary matrix
- Q1
number of clusters for rows
- Q2
number of clusters for columns
- type
type of initialization : "hierarchical_clust", "spectral_clust" or "kmeans_clust"
Examples
a<- matrix(0,10,10)
a[1:5,1:5] = runif(25)<0.9
a[6:10,1:5] = runif(25)<0.5
a[1:5,6:10] = runif(25)<0.3
a[6:10,6:10] = runif(25)<0.1
print(a)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 1 1 1 1 0 1 0 1 0
#> [2,] 1 1 1 1 0 0 0 0 1 0
#> [3,] 1 1 0 0 1 0 0 0 1 0
#> [4,] 1 1 1 1 1 0 1 0 1 0
#> [5,] 1 1 1 1 1 0 0 0 0 0
#> [6,] 0 1 0 0 1 0 0 0 0 0
#> [7,] 0 0 0 0 1 0 0 0 0 1
#> [8,] 1 0 0 1 0 0 0 0 0 0
#> [9,] 1 0 1 1 1 1 0 0 0 0
#> [10,] 0 1 1 1 1 0 0 0 0 1
print(clustinit_LBM(a,2,2))
#> [[1]]
#> [1] 1 1 2 1 1 2 2 1 1 2
#>
#> [[2]]
#> [1] 1 1 1 1 1 2 2 2 2 2
#>