Stochastic block model
Probabilistic model of network, credits to Sophie Donnet and Pierre Barbillon

\documentclass[varwidth,border=3pt,tikz]{standalone}
\usepackage{multicol}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumitem}
%\usetikzlibrary{calc,shapes,backgrounds,arrows,automata,shadows,positioning}
\usetikzlibrary{arrows,shapes,positioning,shadows,trees,calc,backgrounds,automata,positioning}
\tikzset{
basic/.style = {draw, text width=3cm, font=\sffamily, rectangle},
root/.style = {basic, rounded corners=2pt, thin, align=center,
fill=green!30},
level 2/.style = {basic, rounded corners=6pt, thin,align=center, fill=green!60,
text width=8em},
level 3/.style = {basic, thin, align=left, fill=pink!60, text width=3.5cm}
}
% pour tickz multilevel
\definecolor{redorg}{RGB}{215,48,39}
\definecolor{orangeorg}{RGB}{253,174,97}
\definecolor{blueind}{RGB}{69,117,233}
\definecolor{cyanind}{RGB}{116,173,209}
\definecolor{greenind}{RGB}{112,130,56}
\definecolor{dgreen2}{RGB}{48,56,215}
\begin{document}
\begin{tikzpicture}
%% UN GRAPH
\tikzstyle{every edge}=[-,>=stealth',shorten >=1pt,auto,thin,draw]
\tikzstyle{every state}=[draw=none,text=white,scale=0.65, font=\scriptsize, transform shape]
\tikzstyle{every node}=[fill=yellow!40!orange]
% premier cluster
\node[state] (A1) at (0,0.5) {A1};
\node[state] (A2) at (1,0.5) {A2};
\node[state] (A3) at (.5,1.5) {A3};
\path (A2) edge [bend left] node[fill=white,below=.1cm]
{$\pi_{\textcolor{yellow!40!orange}{\bullet}\textcolor{yellow!40!orange}{\bullet}}$}
(A1)
(A1) edge [bend left] (A3)
(A3) edge [bend left] (A2);
\tikzstyle{every node}=[fill=dgreen2!80!black]
\foreach \angle/\text in {234/B1, 162/B2, 90/B3, 18/B4, -54/B5} {
\node[fill=dgreen2,state,xshift=5cm,yshift=3.5cm] (\text) at
(\angle:1cm) {\text};
}
\path (B2) edge (B5)
(B1) edge (B4);
\foreach \from/\to in {1/2,2/3,4/5,5/1}{
\path (B\from) edge [bend left] (B\to);
}
\path (B3) edge [bend left] node[fill=white]
{$\pi_{\textcolor{dgreen2!80!black}{\bullet}\textcolor{dgreen2!80!black}{\bullet}}$} (B4) ;
\tikzstyle{every node}=[fill=green!50!black]
% troisieme cluster
\node[state] (C1) at (3,-.5) {C1};
\node[state] (C2) at (4,0) {C2};
\path (C1) edge [bend right] node[fill=white,below=.25cm]
{$\pi_{\textcolor{green!50!black}{\bullet}\textcolor{green!50!black}{\bullet}}$}
(C2);
% inter cluster
\path (A3) edge [bend right] (B2)
(A3) edge [bend left] node[fill=white]
{$\pi_{\textcolor{yellow!40!orange}{\bullet}\textcolor{dgreen2!80!black}{\bullet}}$}
(B3)
(C2) edge [bend right] node[fill=white,right]
{$\pi_{\textcolor{dgreen2!80!black}{\bullet}\textcolor{green!50!black}{\bullet}}$}
(B4)
(A2) edge [bend right] node[fill=white]
{$\pi_{\textcolor{yellow!40!orange}{\bullet}\textcolor{green!50!black}{\bullet}}$}
(C1);
\tikzstyle{every node}=[fill=white]
\node at (9,2) {$n$ nœuds répartis en $Q=3$ clusters};
\node[below=1,align=center ] at (9,2.5) {$\begin{aligned}
& \bullet \quad \text{Clusters\,:}\ \{\textcolor{yellow!40!orange}{\bullet},\textcolor{dgreen2!80!black}{\bullet},\textcolor{green!50!black}{\bullet}\}\\
& \bullet \quad \alpha_{\bullet} = \mathbb{P}(i \in \bullet), i=1,\dots,n \\
& \bullet \quad \pi_{\textcolor{yellow!40!orange}{\bullet}\textcolor{dgreen2!80!black}{\bullet}} = \mathbb{P}(i
\leftrightarrow j | i\in\textcolor{yellow!40!orange}{\bullet},j\in\textcolor{dgreen2!80!black}{\bullet})
\end{aligned}$
};
\node at (9,-1) {$A \sim SBM_{n}(Q,\alpha,\pi)$};
\end{tikzpicture}
\end{document}